An Initilization Method for Subspace Clustering Algorithm
نویسندگان
چکیده
منابع مشابه
An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملScalable Iterative Algorithm for Robust Subspace Clustering
Subspace clustering (SC) is a popular method for dimensionality reduction of high-dimensional data, where it generalizes Principal Component Analysis (PCA). Recently, several methods have been proposed to enhance the robustness of PCA and SC, while most of them are computationally very expensive, in particular, for high-dimensional large-scale data. In this paper, we develop much faster iterati...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملTowards Effective Subspace Clustering with an Evolutionary Algorithm
This paper proposes a new evolutionary algorithm for subspace clustering in very large and high dimensional databases. The design includes task-specific coding and genetic operators, along with a non-random initialization procedure. Reported experimental results show the algorithm scales almost linearly with the size and dimensionality of the database as well as the dimensionality of the hidden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Intelligent Systems and Applications
سال: 2011
ISSN: 2074-904X,2074-9058
DOI: 10.5815/ijisa.2011.03.08